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Supply chains are increasingly global, complex and multi-tiered. Consequently, companies often struggle to maintaincom-
plete visibility of their supply network. This poses a problem as visibility of the network structure is required for tasks like
effectively managing supply chain risk. In this paper, we discuss automated supply chain mapping as a means of maintaining
structural visibility of a company’s supply chain, and we use Deep Learning to automatically extract buyer–supplier relations
from natural language text. Early results show that supply chain mapping solutions using Natural Language Processing and
Deep Learning could enable companies to (a) automatically generate rudimentary supply chain maps, (b) verify existing
supply chain maps, or (c) augment existing maps with additional supplier information.
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1. Introduction

Complex products, like cars or aircraft, can be composed of tens of thousands or even millions of parts. Rather than all
being produced in-house, parts and materials are sourced from a large number of suppliers spread across the world. As sub-
stantial parts of the value creation are outsourced to suppliers, who, in turn also outsource to sub-tier suppliers themselves,
increasingly multi-tiered, complex and geographically distributed supply networks emerge (Christopher and Lee2004).
Consequently, companies gradually lose visibility over the topology of their supply network. A study by Achilles, a provider
of supply chain management solutions, claims that ‘40% of companies who sourced only in the UK, and almost 20% who
sourced globally, had no supply chain information beyond their direct suppliers’ (Achilles Group2013).

Lacking visibility of the supply chain structure poses a problem: by de�nition, a supply network is a network of depen-
dencies to suppliers, and the performance of a company’s supply chain is crucial to its operations. Information about its
extended suppliers is a valuable input to various decision-making processes of a �rm, such as managing the ef�ciency,
resilience, or sustainability of its supply chain. Furthermore, in recent years companies have come under increasing pres-
sure to understand their supply chains to prevent modern forms of slavery and other human rights violations. In particular,
supply chain risk management without visibility of the supply network is a problem while at the same time the emergence
of longer, geographically distributed supply chains exposes companies to more and a wider range of risks. Disruptions that
occur on a sub-tier can propagate through the network, creating a ripple effect (Ivanov, Sokolov, and Dolgui2014) and
halt the production of companies that never knew they had this dependency on a sub-tier supplier. Studies show that the
share of supply chain disruptions that originate with suppliers further upstream than the direct suppliers can be as high as
50% (KPMG International & The Economist Intelligence Unit2013; Business Continuity Institute2014). Suppliers critical
to continued operations can be located anywhere in the multi-tiered network and do not have to correspond to large sales
volumes (Yan et al.2015). The reason why structural supply chain visibility cannoteasily be achieved is a combination
of multiple factors. One major reason is that companies consider information about their supply base proprietary and are
unwilling to share it. Supply chain mapping is frequently named as the recommended solution to the problem of limited
supply chain visibility, and various tools exist for visualising buyer–supplier relations, yet the actual issue of acquiring the
required data in the �rst place remains unaddressed (Farris2010).

Even though data that can readily be used for supply chain mapping is still scarce, vast amounts of data have become
abundantly available at low cost via the Web. A large proportion of this data is in text form and contains valuable infor-
mation about buyer–supplier relations. Since these text documents typically consist of running text in natural language
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Figure 1. Conceptual model of the research focus: automating the extraction of individual buyer–supplier relations from unstructured
text.

(unstructured text) instead of in tables with a known data schema, extracting information from it is a challenging problem.
Thanks to advances in Machine Learning (ML), in particular Deep Learning, and Natural Language Processing (NLP), the
extraction of information can now be increasingly automated. A solution that could at least partially automate the genera-
tion of supply chain maps from text documents would have manybene�ciaries and use cases. Improved knowledge of the
supply chain structure would enable a company to better detect and mitigate risks in advance. For example, a company may
not be aware that some of its direct suppliers depend on the same sub-tier supplier, a potential single point of failure. In
this case, the true risk exposure is obscured. With this knowledge, a company could mitigate the risk, e.g. by increasing
inventory levels, demanding suppliers to diversify their supply base, or by identifying substitute parts with different supply
chains. Knowledge of the supply chain structure would also enable a company to react to risk events more quickly and
appropriately. For example, knowledge about which sub-tier suppliers are located in a recently �ooded region could allow
a company to react quickly and, for example, enable them to secure alternative supplies faster than any competitor. The
potential bene�ts are not limited to companies managing risks of their own supply chains. Other actors may also bene-
�t from a better understanding of supply networks, such as governmental agencies, insurance companies, or management
consultancies.

The overall aim of this research is to examine to what extent and how supply chain maps can be automatically generated
from unstructured, natural language text, such as news reports or blog posts. Given how frequently new algorithms and
network architectures are proposed in ML and NLP, the aim isnot to identify the best possible algorithm but to test the
general feasibility of the idea. A prerequisite for the creation of supply chain maps is the extraction of individual buyer–
supplier relations which represents the main focus of this paper. Figure1 shall summarise the problem background.

This study builds upon a previous paper (Wichmann et al.2018) where the idea of automatically generating supply chain
maps from natural language text was �rst introduced and its challenges discussed. In this paper, we focus on the automated
classi�cation of buyer–supplier relations by creating a text corpus and using it to train and test a Deep Learning classi�er.
The automatically extracted buyer–supplier relations arethen visualised in a basic supply chain map.

After summarising the relevant background (Section2), namely supply chains, supply chain visibility as well as relevant
concepts from Machine Learning and NLP, we de�ne the problemof extracting individual buyer–supplier relations from
text (Section3). We then outline the methodology for addressing the problem (Section4). Subsequently, we summarise and
discuss the results (Section5). The extracted buyer–supplier relations can be visualised in the form of a basic supply chain
map (Section6). Finally, we provide concluding remarks and propose ideasfor future research (Section7).

2. Related work

2.1. Supply chains and supply chain mapping

2.1.1. Supply chains

A supply chain emerges as a focal company (hereafter also referred to as Original Equipment Manufacturer or OEM)
buys products or services from a supplier to produce their own products. Since supply chains are networks (Lambert and
Cooper2000), they consist of nodes and directed links of ‘�ows of products, services, �nances, and/or information from
a source to a customer’ (Mentzer et al.2001). The combination of nodes and links give the network its structural dimen-
sions. The horizontal structure refers to the number of tiers across the supply chain. The vertical structure refers to the
number of suppliers or customers represented within each tier (Lambert and Cooper2000). The term ‘upstream’ is used
to denote the direction towards to original supplier whereas ‘downstream’ refers to the direction towards the ultimate
customer.



International Journal of Production Research 3

2.1.2. Structural supply chain visibility

In academic literature, the termsupply chain visibility(also referred to assupply chain transparency) has been de�ned in
various ways. For a comprehensive overview the reader may refer to Goh et al. (2009). Within the scope of this paper,
we adopt the broader de�nition by Barratt and Oke (2007) who de�ne supply chain visibility as ‘the extent to which
actors within the supply chain have access to or share timelyinformation about supply chain operations, other actors and
management which they consider as being key or useful to their operations’.

Included in the above de�nition is knowledge of the topologyof the supply network, that is knowledge of the actors
and the network of their dependencies, which we will refer toasstructural supply chain visibility. Structural supply chain
visibility is often limited (e.g. Achilles Group2013). Any company knows its direct suppliers and customers, yetalready
knowledge of second-tier suppliers tends to be incomplete.

The reason for limited supply chain visibility is a combination of multiple factors. The main reason is the ‘proprietary
nature of each supplier’s relationships with its partners’(Shef� 2005). Suppliers have an incentive not to disclose their own
supply network to their customers, especially if they run the risk of being cut out as the middleman or losing bargaining
power. Suppliers can be contractually obliged by an OEM to disclose their own suppliers, but the information asymmetry
between OEM and direct suppliers renders it dif�cult for theOEM to check the completeness of the provided informa-
tion. The dif�culty of obtaining the required data is exacerbated by the fact that supply chains are dynamic (Lambert and
Cooper2000).

Lacking structural visibility cannot be simply addressed by track-and-trace technology based on RFID or other IoT
solutions. If used across company boundaries, participating companies know each other and have consented to exchange
real-time information about the location and condition of goods in transit, inventory levels or other dynamic aspects of
supply chain performance. However, these technologies have not been designed to discover the supply chain structure, such
as otherwise unknown supply chain participants on a sub-tier and their inter-relations.

2.1.3. Importance of structural supply chain visibility

The importance of structural supply chain visibility has been highlighted by various studies: Basole and Bellamy (2014)
examine the link between structural supply chain visibility and risk management and �nd that ‘structural visibility into the
lower tiers of the supply network has a signi�cant mitigating impact on cascading risks’ and that

enhanced visibility is an important and perhaps essential capability for effective supply chain risk identi�cation and mitigation.
Supply chain managers must therefore move beyond a simpli�ed dyadic or triadic view to a more holistic approach when developing
risk identi�cation and mitigation strategies.

Examples of obscured risk include suppliers depending on the same sub-tier supplier or high-risk supply chain partici-
pants on a sub-tier. Yan et al. (2015) introduce the idea of a ‘nexus supplier’. Contrary to the intuition that strategic, direct
suppliers are the critical ones due to their direct and largeimpact on a buying �rm’s pro�t and risk position, a nexus supplier
could be located in any (sub-)tier of the supply chain, does not have to relate to a large sales volume, but has a potentially
large impact on the buying �rm if it was disrupted. The existence and identity of such a nexus supplier on a sub-tier could
only be revealed with better visibility into the supply chain structure. The network structure also determines how riskevents
propagate through the network and if they get absorbed or even ampli�ed (Juttner, Peck, and Christopher2003). An early
detection of and response to risk events would require knowledge about which events are relevant to a company’s supply
chain. For this, too, knowledge of the supply chain structure is necessary. Christopher and Peck (2004) state that a

fundamental pre-requisite for improved supply chain resilience is an understanding of the network that connects the business to its
suppliers and their suppliers and to its downstream customers. Mapping tools can help in the identi�cation of ‘pinch points’ and
‘critical paths’.

2.1.4. Supply chain mapping

Supply chain maps are ‘a representation of the linkages and members of a supply chain along with some information about
the overall nature of the entire map’ (Gardner and Cooper2003) and aim to address the problem of limited structural
supply chain visibility. The purpose of supply chain maps, and hence the scope and level of detail, can vary (Gardner
and Cooper2003). Their purpose is generally strategic and they range from ageographic vulnerability map which ‘simply
depicts which supplier of what parts are located in each areaof the world’ (Shef� 2005) to maps that show ‘the �ow
of parts out of given regions, depicting who is involved and the plants in other parts of the world that are dependent on
them’ (Shef� 2005). Supply chains may or may not depict actual geographical relationships (Gardner and Cooper2003).
Gardner and Cooper (2003) provide a comprehensive overview of examples of supply chain maps. The minimal set of
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elements of these supply chain maps typically consists of the companies (nodes of the network) and their inter-relations
(arcs of the network). The arcs commonly indicate the �ow of goods but may also indicate �ows of information or money.
In this paper, we refer tosupply chain mappingas theoverall processof creating and maintaining a supply chain map.
This process includes the steps of gathering the information needs, acquiring and analysing the information and visualising
the results on the required aggregation level. Only few papers appear to exist that re�ect on supply chain mapping as
a method, e.g. Gardner and Cooper (2003) and Farris (2010). Other papers approach the topic from the perspective of
lean management by extending value stream mapping to supplychains, e.g. Suarez-Barraza, Miguel-Davila, and Vasquez-
García (2016). However, numerous papers report on theapplicationof supply chain mapping to speci�c scenarios. For
example, Choi and Hong (2002) provide supply chain mapping case studies in the automotive industry. The supply chain
maps were limited to the centre console assembly of three different product lines. The data was collectedmanuallythrough
interviews, from documents provided by the automotive companies, and via observations during a plant tour. Choi and
Hong (2002) compare the three resulting supply network structures from the points of view of formalisation, centralisation,
and complexity. Another example of a manual supply chain mapping exercise is a report by the US Geological Survey. This
report ‘uses the supply chain of tantalum (Ta) to investigate the complexity of mineral and metal supply chains in general
and show how they can be mapped’ (Soto-Viruet et al.2013).

2.2. Deep learning and natural language processing

2.2.1. Supervised learning

Today, one can arguably distinguish three main types of machine learning: supervised learning, unsupervised learning, and
reinforcement learning (Murphy2012). In supervised learning, the objective during a training phase is to learn a mapping
from provided inputs (called features) to provided outputs(called labels). After the training phase, this learned mapping
can be applied to predict the labels for previously unseen inputs, as shown in Figure2. If the label is a discrete value, the
problem is calledclassiÞcation, andregressionotherwise.

2.2.2. Neural networks and deep learning

Neural Networks(NN), or Arti�cial Neural Networks (ANN), are a family of machine learning algorithms that are loosely
inspired by the biological brain. Each unit in a neural network ‘resembles a neuron in the sense that it receives input from
many other units and computes its own activation value’ (Goodfellow, Bengio, and Courville2016). Neural networks are
composed of stacked layers, and those layers between the input layer and the output layer are calledhiddenlayers. The
number of layers determines thedepthof the model, hence the name ‘Deep Learning’ for neural networks with multiple
hidden layers. Comprehensive introductions to Deep Learning can be found in Chollet (2018) and Goodfellow, Bengio, and
Courville (2016).

A wide variety of model architectures have been developed inrecent years.Feed-Forward Neural Networksare the
simplest form of neural networks. The name refers to the factthat the connections between the nodes in the network do
not form a cycle. Amulti-layer perceptron(MLP) is a type of feed-forward neural network with input layer, output layer
and at least one hidden layer.Recurrent neural networks(RNN), as opposed to feed-forward neural network, contain loops.
This way, they allow the behaviour of neurons not just to be determined by activations in previous hidden layers but
also by activations at earlier times or even a neuron’s own activation at an earlier time. RNNs are particularly suited to
sequential data, such as text sequences, since they can consider the order of the sequence for a prediction task.Long short-
term memory(LSTM) networks are a type of RNN that contains LSTM units. LSTM units were introduced by Hochreiter

Figure 2. Illustration of a supervised learning process.
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and Schmidhuber (1997) and address the problem of the vanishing gradient.Bidirectional RNNs combine the different
representations learned from reading data in both directions. For some types of sequential inputs, models perform similarly
well if the data is read ‘anti-chronologically’. However, because these RNNs trained on the reversed sequence learn a
different representation, it is useful to combine the outputs of RNNs trained on the normaland the reversed sequence
(Chollet 2018). Such network architectures are calledbidirectional RNNs, and bidirectional versions also exist for RNN
sub-types (e.g.BiLSTM; Graves and Schmidhuber2005). Even more recent developments, such as Google’s attention-based
transformers (Vaswani et al.2017), were not considered within the scope of this paper.

2.2.3. Natural language processing

Natural Language Processing (NLP) is a rapidly developing sub-�eld of Arti�cial Intelligence (AI) that specialises inthe
extraction and manipulation of natural language text or speech (Chowdhury2003). Modern NLP methods increasingly
rely on Machine Learning, in particular Deep Learning. In this work, we focus on Information Extraction (IE), a funda-
mental task of NLP that aims to automatically extract structured information from unstructured natural text (Cowie and
Lehnert1996). This structured information is typically used to construct large knowledge bases, relational databases, and
ontologies. IE is subdivided into two subtasks:Named Entity Recognition(NER), which is the subtask of locating and clas-
sifying instances (text mentions) of entities with pre-de�ned categories of interest (Nadeau and Sekine2007), andRelation
Extraction(RE), which is the task of detecting and classifying semantic relationships between named entity mentions (Bach
and Badaskar2007).

In analogy to Machine Learning in general, relation extraction methods can be distinguished based on the degree of
supervision. They commonly fall into one of the following categories (cf. Mintz et al.2009): Unsupervised methodssimply
use statistical co-occurrence,supervised methodsrequire hand-labelled examples to learn from,distant supervisionattempts
to address the costs of obtaining labels by leveraging a database of known relations, andbootstrappingis an iterative process
starting with a few seeds but suffering from semantic drift. Lastly,lexico-syntactic patterns, such as the Hearst patterns
(Hearst1992), are manually pre-de�ned and do not use Machine Learning.

Machine Learning algorithms generally expect numeric tensors as input. In order to use a sequence of text as input, it
�rst needs to be broken down into tokens (tokenisation), andthen each token needs to be converted into a numeric vector
(vectorisation).Word embeddingsare real-valued, low-dimensional, and dense vectors that represent unique words (Mikolov
et al.2013) and encapsulate semantic relationships between different words. Word embeddings that have been pre-trained
on large datasets are available, such as GloVe1 or Google’s Word2Vec News embeddings.2

Generally used performance metrics for information retrieval and information extraction systems includeprecision, the
share of retrieved documents that are relevant, andrecall, the share of all relevant documents that are retrieved. Because of
the trade-off between both metrics, the harmonic mean of both – theF1 score – is commonly used for benchmarking.

2.3. Automatic extraction of supply networks from text

Farris (2010) attempts to address the problem of �nding actual data for use in strategic supply chain mapping by using
economic input–output data. This data was then converted into macro industry supply chain maps. However, the process
was manual and did not allow for any maps on a company-level.

NLP can be used to automatically generate general network structures from text, e.g. to automatically extract taxonomic
and non-taxonomic ontologies from text (Maedche and Staab2001). Ontologies form a network structure of directed rela-
tions which can be visualised in an ontology graph. The scopeof related work, such as in the �eld of OpenIE, is commonly
still limited to basic relations, such as ‘is-a’ or ‘located-in’ relations.

Extracting network structures from text has also been triedin the bio-medical domain. The LION project3 (Pyysalo
et al.2018) uses statistical co-occurrence to automatically extractrelations from scienti�c papers in the bio-medical domain
and visualise them as an interactive network. The purpose ofthe proposed method and tool is to facilitate the discovery of
new knowledge. Because the system uses co-occurrence only,relations are non-directional and not further classi�ed.

A recent paper by Yamamoto et al. (2017) attempts to extract company-to-company relations from text but only focusses
on (non-)cooperative and (non-)competitive relations using distant supervision and manual labels. While this classi�cation
may seem to also be helpful with the extraction buyer–supplier relationships, it actually is not: Competitive clues include
terms like ‘sues’, ‘lawsuit’ or ‘loses’. Because buyers andsuppliers not uncommonly happen to have legal disputes, these
clues can be misleading for the purpose of supply chain mapping.

In a previous paper, we introduced the idea of using NLP to automate the supply chain mapping process, derived a set
of requirements for such a process and showed a basic prototypical implementation of a system (Wichmann et al.2018).
The relation extraction was based on lexico-syntactic patterns and, therefore, showed a high precision but suffered from low
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recall. To capture a wider range of expressions and reduce the effort of manually de�ning extraction patterns, we proposed
to use Deep Learning.

3. The problem of extracting buyer–supplier relations

3.1. From the overall problem to the classiÞcation of individual relations

An ideal solution for automating the complete process of supply chain mapping from text has to meet a wide range of
requirements, such as the ability to infer actual sub-tier relations (‘transitivity problem’) (Wichmann et al.2018). However,
the extraction ofindividual buyerÐsupplier relations between two companies can be considered a fundamental building
block for automating the overall process. A collection of extracted individual relations could already be directly visu-
alised as a (non-transitive) network. Conceptually, the extraction process requires two stages: First, mentions of named
entities need to be detected and classi�ed as organisations(as opposed to locations, persons etc.). Secondly, each pair of
two organisational mentions needs to be classi�ed with respect to the stated relationship between them. While general
solutions for Named Entity Recognition (NER) are available, models to classify buyer–supplier relations do not appear
to exist.

Figure3 illustrates the focus of this paper conceptually.

3.2. Problem formalisation

For a given single, self-contained sentence in the English language, all pairs of detected organisational entity mentions
shall be classi�ed with respect to the existence of a buyer–supplier relation explicitly stated between them. We will ignore
relations that would require the resolution of pronouns to company names (co-reference resolution). Furthermore, we will
ignore more multi-faceted relations at this stage, such as extracting supplied products or further companies involved. Each
relation shall only be assigned one single class, so that theoverall problem can be characterised as asingle-label multi-
class classiÞcation problemwith classes, such as ‘company A supplies company B’, ‘company A is supplied by company
B’ (inverted direction), ‘company A and B engage in a partnership’ or ‘no buyer–supplier relation expressed’. The class
de�nitions used can be found in the methodology section below.

Across a collection of documents, the problem can be illustrated as shown in Figure4: a collection of documents is
converted into a list of triples. Each triple consists of twoorganisational named entities and the identi�ed relationship
class.

4. Methodology

4.1. Overview

We address the problem in two subsequent stages: corpus creation and relation classi�cation.

Figure 3. Focus of this paper: classi�cation of buyer–supplier relations between two mentions of organisations.

Figure 4. Buyer–supplier extraction across multiple documents: The aim is to extract triples of Entity A, Entity B, and the relationship
class.
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Corpus creation: The corpus creation consists of both the collection and preparation of the text input as well as the
process of labelling sentences by human annotators. The importance of the corpus is two-fold:

€ ‘Gold standard’ : In order to evaluate classi�cation performance, a human-labelled text corpus is required that will
be considered the ground truth against which the classi�ers’ predictions can be compared. The gold standard data
will allow us to measure both recall and precision. The datasets also serve as a training dataset for a Machine
Learning classi�er and is, thus, more than a pre-processingstep but part of the solution.

€ Suitability for automation:Furthermore, higher inter-annotator agreement suggests amore manageable, formal-
isable task that is more likely to be suitable for automation. If it is impossible to establish a ground truth among
human annotators, a classi�er cannot be expected to performwell on the problem. It is not obvious that the task of
classifying buyer–supplier relations is simple or formalisable enough for annotators to agree.

The text corpus shall be representative of a general news set, such that a classi�er’s performance measured on the dataset
is a good predictor of its performance on a previously unseengeneral news dataset. This is a challenging requirement given
the expected small size of the text corpus and the low share ofsentences describing buyer–supplier relation in a general
news dataset.

Relation classiÞcation: Only once a gold standard dataset has been established, a supervised classi�er can be trained
and the best-performing one with respect to recall, precision andF1 score can be identi�ed. The achievable performance
is dependent on the size and quality of the corpus. A high recall would not yet suggest that supply chains can be fully
reconstructed; this would depend on the information availability which is not tested in this stage. Similarly, NER errors are
not considered when the classi�cation performance is measured.

4.2. Corpus creation

4.2.1. Sentence collection

The aim of this phase is to create a pool of sentences from which sentences can be randomly selected and presented to the
annotators.

To draw from a wider range of general news articles, we selected multiple data sources: the Reuters corpora TRC2
and RCV1,4 the NewsIR’16 dataset,5 and a customised dataset obtained from webhose.6 For an unbiased dataset, sentences
should ideally be randomly sampled from these general news datasets. However, limited labelling resources are a constraint.
Because sentences need to be manually annotated, the dataset cannot be too sparse so that annotators spend most of their time
annotating sentences without any buyer–supplier relation(henceforth referred to as negative examples, whereas positive
sentence express at least one directed or undirected buyer–supplier relation or partnership). Because most sentencesin any
news dataset are negative, annotated negative sentences are not that valuable.

Approach A: Sampling of documents into three partitionsOur �rst approach to address this trade-off was to sample doc-
uments into three separate partitions: one partition for random documents drawn from a general news dataset, a second
partition for documents that were retrieved using keywordsrelated to selected key industries (aerospace and automotive),
and a third partition for documents that were retrieved based on a search for company names in these key industries. This
way, the trade-off between the expected relevance of a sentence and its bias could in principle be steered by adjusting the
proportion of each partition in the �nal sample.

Among other reasons, aerospace and automotive were chosen as key industries as they are known for having complex
and global supply chains. In addition, the assumption was that these industries are both well-covered in general news as
well as that news reports often include supply chain information. For the aerospace industry, for example, documents were
�ltered for the existence of keywords, such as ‘aerospace’,‘aircraft’ or ‘planemaker’. The RCV1 Reuters dataset contained
industry codes (‘Thomson Reuters Business Classi�cation’) and could more accurately be �ltered using 23 of these codes
instead. 50% of documents were sampled from the aerospace industry and 50% from the automotive industry. To �lter
documents by company names, a of the top 100 global automotive company names and brands was used as well as a list of
the top 100 global aerospace and defence companies. Relevant documents in each partition were subsequently segmented
into individual sentences that would then be drawn randomly. Initial tests quickly revealed that the proportion of positive
sentences even in the more relevant data partitions was too small for an ef�cient annotation by humans.

Approach B: Manual collection of candidate sentencesTo address this problem but without compromising the overall
human annotation, in addition to the already created dataset, candidates for positive sentences were manually collected by
three researchers and stored in a further data partition. Toprevent biases, these positive sentences could not just be obtained
via a Web search that used potential features, such as ‘supplies Toyota with’. Otherwise, a classi�er trained on the datawould
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Figure 5. Documents were sampled from four different sources and assigned to three different partitions each. Manuallycollected
candidate positive sentences were added to the corpus to increase the share of positive examples.

be biased towards the patterns the positive sentences were found with in the �rst place. Instead, the following strategies were
deemed acceptable and used to collect the sentences:

€ Using a Web search engine by using as a search term (a) a singlecompany name or (b) the names of two companies
of which one is known or merely suspected to supply the other.

€ Manually analyse websites that tend to publish industry news, such as recent deals and partnerships.

In all of these cases, sentences were manually identi�ed in the search result summaries, headings or the original articles
that could describe a buyer–supplier relation, partnership or collaboration. Ambiguous sentences were not ignored but were
also collected so that the overall dataset was rather too inclusive than too exclusive. Similar to the previous approach, the
focus was on aerospace and automotive companies but any by-catch from other industries was also added to the collection.
These candidate positive sentences were collected and stored without a label as it was up to the annotators to classify the
sentences.

The drawback of adding manually collected candidate positive sentences is the introduction of additional bias. This is
unavoidable as it is a direct consequence of the objective ofmanually collecting sentences. But it may lead to so-called
‘over�tting’ and result in false positives if the classi�eris applied to previously unseen data. Some words may be reliable
indicators of buyer–supplier relations in the training data but not as reliable in a random general news dataset. E.g. words,
such as ‘award’ or ‘buy’ may beover-representedin the positiveexamples of the training data. To address the issue, the
classi�er can be reiteratively improved: by manually labelling sentences that turned out to be false positives and adding
these labelled sentences to the training data.

Overall sampling processThe overall sampling and pre-processing methodology is shown by Figure5 and combined
both sampling approaches to equal parts. Documents were segmented into sentences using spaCy7 as off-the-shelf solution.
To facilitate the subsequent annotation, sentences were automatically NER-tagged, again using spaCy. The organisation
names werenot provided to the NER tagger in advance. To reduce false positives, Flair8 and the Stanford CoreNLP9

NER taggers were used in combination with spaCy in a simple ensemble. The results of all three libraries had to match
for an organisational named entity to be considered in the subsequent steps. Only sentences with two or more detected
organisational named entities were admitted to the annotation process. Automatic NER tagging performs well but is still
imperfect and organisations may not have been detected, erroneously detected, or detected with incorrect segmentation
boundaries.

4.2.2. Labelling

ClassesDue to the importance of directionality in supply relations, two classes are designed for explicitly expressed directed
buyer–supplier relations: (a) ‘company A supplies companyB’, and (b) ‘company A is supplied by company B’ (inverted
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direction). The actual sentence in the news article may use different words to express this relation, such as ‘purchasing
from’ or ‘using parts from’. These relations are not limitedto the purchase of goods, parts and material but also includethe
use of services, such as logistics services. These relations may be expressed in any tense (past, present or future) since the
tense could later automatically be identi�ed if necessary.Furthermore, these relations should be expressed as certain, factual
statements rather than a possibility.

This leaves a set of other ways a buyer–supplier relation maybe expressed: Collaborations, joint ventures, and other
forms of partnerships do not have an obvious directionalitybut may still result in dependencies that are relevant for a supply
chain map. Furthermore, buyer–supplier relations can be only implied, ambiguous or explicitly stated as uncertain, such as
‘company A is in talks with company B over the purchase of’ or ‘company A plans to buy from company B’. To avoid
too many different classes and to ensure that only one class is ever applicable, these cases are grouped into a single third
class of buyer–supplier relations (c) that are undirected,or implied or stated as uncertain. This class also aims to ensure that
examples of the �rst two classes are as reliable as possible.

We decided to distinguish a further class of relations (d) where one organisation owns another (fully or partially) or ispart
of another organisation. Without this class, such relations could be misinterpreted as normal buyer–supplier relations (e.g.
‘company A buys a stake in company B’ or ‘company A sells its manufacturing business B to company C’). The purpose of
this class is less to obtain ownership relations which couldbe obtained from publicly available reports or databases but to
facilitate the annotation decisions and ensure the purity of the other buyer–supplier relationship classes.

Because the named entity recognition was performed automatically as part of the pre-processing of a sentence, errors
may occur where a labelled text sequence is not an organisation or was incorrectly segmented. To keep the task complexity
manageable and to ensure the identical NER tagging results as a starting point for all annotators, annotators were not asked
to rectify incorrect NER tags. Instead, a relation could be classi�ed as ‘reject’ (e) in that case or other circumstanceswhere
an annotator felt incapable of assigning a class.

Finally, the case that none of the above classes are appropriate was captured by a last class (f). This is the most common
case for sentences randomly obtained from news articles.

MaskingCompany names in each sentence were automatically masked sothat the classi�er didnot learn relations
betweenspeciÞcorganisational named entities but between any text sequences tagged as organisations. Three types of masks
were used: one mask each for the two organisational named entities in question (‘__NE_FROM__’ and ‘__NE_TO__’), and
one mask (‘__NE_OTHER__’) for all other organisational named entity mentions not in question but occurring in the
sentence. The exact character sequences of these masks are irrelevant; they just need to be uncommon enough to not be
confused with any words expected to appear in the input text.As Figure7 shows, for each possible unordered pair of
two organisational named entities, the masking will be different. A sentence with three organisational named entities, for
instance, will result in three differently masked versions. For each of these masked versions, the classi�cation algorithm
is supposed to consider the relation between the entities masked as ‘__NE_FROM__’ and ‘__NE_TO__’. This way it is
ensured that relations between all organisational named entities in a sentence are classi�ed. For a given pair of organisational
named entities, it is suf�cient to always mask the one mentioned �rst as ‘__NE_FROM__’ and the one mentioned thereafter
as ‘__NE_TO__’. This is because classes are either non-directional or there is a class for each directionality.

Labelling processThe labelling was conducted independently by seven annotators who had received the same written
instruction as well as an introductory labelling session. To facilitate the labelling, a Web app had been developed to pro-
vide an interactive user interface, as shown in Figure6. For each pair of two organisational named entities that hadbeen
automatically detected, the most appropriate relation could be chosen from a drop-down menu.

To measure inter-annotator agreement, a subset of all sentences had to be labelled by all annotators. In addition,
within each labelling session of 100 sentences, 5 sentencesfrom the beginning of a session were randomly re-injected
towards the end to measure intra-annotator agreement. To obtain the �nal dataset, a simple majority vote was performed
for each organisation-to-organisation relation in each sentence across all annotators. The overall process is illustrated in
Figure7.

The organisational named entities were not masked but revealed to the annotators. This decision was made deliberately
to not make the labelling task more dif�cult by adding a layerof abstraction. To avoid incorrect labels, annotators were
speci�cally instructed not to use the company names as a cluefor their labelling decision, to only consider the information
provided by the sentence at hand, and to not use any personal background knowledge about the relationship between two
organisations.

4.3. ClassiÞcation

ClassesFor the training and testing of the classi�er, the classes ‘no buyer–supplier relation’ and ‘rejected by annotator’ were
merged as any application based on the classi�er would likely treat the ‘reject’ class the same as a non-existing relation,
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Figure 6. Interface of the annotation app: each pair of already auto-detected organisational named entities was labelled by human
annotators.

Figure 7. Each sentence may contain multiple pairs of organisational named entities; each pair gets labelled potentially multiple times
and potentially by multiple annotators.

especially in case of incorrectly identi�ed organisations. This results inÞve classesthat need to be distinguished by the
classi�er.

Used algorithmsIn the domain of Machine Learning and NLP, new network architectures are published frequently and
the state-of-the-art is a fast-moving target. As a representative of the current state-of-the-art, a BiLSTM deep neural network
was chosen. To add further points of comparison, we also chose a multi-layer perceptron (MLP) as well as a linear Support
Vector Machine (SVM) classi�er (Boser, Guyon, and Vapnik1992).

Baseline performanceTo establish a baseline performance, we use two dummy classi�ers: a random one and a strati�ed
one. As the name suggests, the random dummy classi�er votes fully randomly, resulting in a uniform distribution of assigned
labels. The strati�ed baseline classi�er10 votes randomly but respects the training set’s class distribution. That is if the class
‘None’ represents 70% of all assigned class labels, then thebaseline classi�er would vote ‘None’ randomly but 70% of the
time. The strati�ed classi�er is expected to outperform thefully random classi�er.

Details on the neural network classiÞers (MLP and BiLSTM)The feature setis identical for both neural network
classi�ers and is based on the word embeddings obtained fromthe GloVe dataset. The dataset, originally consisting of
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840B tokens and 300-dimensional vectors trained on Common Crawl, was �ltered by those tokens actually present in the
training data. Each mask was assigned a separate embedding vector, e.g. the mask ‘__NE_FROM__’ was assigned the
300-dimensional vector

�
1 . . . 1 1 1 0

�
. The other masks were assigned the vectors

�
1 . . . 1 1 0 1

�
and�

1 . . . 1 0 1 1
�
, respectively.

The BiLSTM and the MLP architecture were designed to expect 380 features as input. This means that, for each classi�-
cation task, a text sequence of up to 380 ‘words’ can be fed into the network. Each ‘word’ is represented by its corresponding
300-dimensional embedding. The BiLSTM has an embedding layer and considers 16 features in the hidden state of the
LSTM layer. It also uses a dropout with a probability of 0.5. The last layer is a dense layer with �ve output units, one for
each class. The LSTM model used the standard hyperbolic tangent function (‘tanh’) activation function. The MLP archi-
tecture is identical in terms of input and output. An embedding layer is followed by a single hidden layer of size 128. This
then connects to the output layer of size 5. In initial tests of increasing the network depth did not lead to noticeable perfor-
mance improvements. ReLU was used as an activation functionfor the MLP. In the case of both neural network classi�ers,
a Softmax layer is used to normalise the outputs so that they can be interpreted as probabilities. As common for single-label
multi-class classi�cation problems, categorical cross-entropy was used as a loss function for the neural networks. ‘Adam’
(Kingma and Ba2014) was used as optimisation algorithm. Each network is trained and tested multiple times and the results
are averaged over all runs.

Details on the linear SVM classiÞerGenerally, an SVM is a discriminative classi�er that estimates a separating hyper-
plane in a high-dimensional feature space given labelled training data. The algorithm outputs an optimal hyperplane which
can be used to categorise new examples. We use a grid search totune the hyperparameter of the SVM classi�er that is
commonly referred to asC. Simply speaking, SVMs aim to �t a hyperplane to separate data points such that (1) the largest
minimum margin between different classes is achieved and (2) as many instances as possible are correctly separated. As it
is not always possible to optimise both, theC parameter determines the importance of (1).

For the SVM model, a different data representation had to be chosen. We use a simple bag-of-words approach
(Joachims1998), where the order of words is disregarded, and a one-hot-vector is used to represent a sentence. A one-
hot-vector is a vector with a length equal to the vocabulary size of the training dataset (in our case 10,803 tokens), a value
of ‘1’ is assigned to the index of the vector if a word appears in the given sentence, ‘0’ otherwise. The SVM does not
consider word order nor does it consider positional information about the organisational named entities. Similar to the other
algorithms, the SVM isnot provided with the company names. The SVM classi�er is trained on this representation using a
one-vs-restsetup.

5. Results and discussion

In this section, we present and discuss the results obtainedby the approach we proposed in Section4.

5.1. Corpus creation

Characteristics of the text corpusA single sentence may contain more than two mentions of organisational named entities,
and thus multiple potential relations. Each unique set of two mentions of organisational named entities in a sentence required
a label that describes the ‘arc’ between them. For this paper, we used a dataset of 3887 annotated unique sentences resulting
in 8231 labelled unique arcs. Roughly half of the sentences come from the randomly sampled pool of sentences and another
half from the pool of sentences that has been manually collected. Each unique arc can be labelled redundantly by multiple
annotators (inter-annotator agreement) and even by the same annotator (intra-annotator agreement). Thus, the numberof
assigned class labels (14,632) is higher than the number of unique arcs. The contribution of labels across annotators varied
and is shown in Figure8.

As expected, the resulting dataset is imbalanced: Nearly 70% of assigned labels were ‘none’ (� 60%) or ‘reject’ (� 10%).
The label distribution after majority vote are shown in Figure9. Because of the imbalance,F1 score (as opposed to accuracy)
is considered the metric to optimise for.

Achieved inter- and intra-annotator agreementCohen’s� statistic (Cohen1960) was chosen to measure annotator
agreement. To adapt the metric from a pair-wise comparison to more than two annotators, the arithmetic average of Cohen’s
� across all pairs of annotators can be computed. The achievedaverageinter-annotator agreement is� = 0.90. The average
intra-annotator agreement is� = 0.86. Values of both metrics suggest annotations of good quality.

5.2. ClassiÞcation

The achieved classi�cation results are shown in Table1. Given the class imbalances, we report the micro-averaged metrics
instead of macro-averaged ones. A macro-averaged metric would initially be computed independently for each class and
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Figure 8. Label distribution by annotator before majority vote (N = 14, 632 assigned labels).

Figure 9. Label distribution for 8231 arcs (after majority vote).

Table 1. Classi�cation results.

Method Con�guration
F1 score

(micro-averaged)

Random dummy classi�er Fully random dummy baseline classi�er (uniform assignment of class labels) 0.20
Strati�ed dummy classi�er Strati�ed dummy baseline classi�er (random voting respecting the training set’s

class distribution)
0.38

SVM Bag-of-words converted into one-hot-vector (word order and position of
organisational named entities are not considered)

0.68

MLP GloVe embeddings; input sequence length of 380; batch size of 32 0.71
BiLSTM GloVe embeddings; input sequence length of 380; batch size of 32 0.72

then averaged over all classes. This would treat all classesequally despite their different sizes. Furthermore, in multi-class
single-label scenarios, the micro-averaged recall equalsthe micro-averaged precision, and hence theF1 score. Oversampling
the minority classes was conducted but did not visibly improve classi�cation performance. The dataset was partitionedinto
training set (70%), validation set (10%), and test set (20%). The neural networks were implemented in Python 3.6 using
PyTorch and trained on a single Linux desktop machine using an NVidia GeForce GTX 1080 Ti GPU. Using the above
system and dataset, a single training and testing run (e.g. BiLSTM trained over 22 epochs and using a batch size of 32)
could be completed in approximately one minute. As is commonpractice, the loss, and theF1 score on the validation data
were observed while increasing the number of epochs to avoidover- or under�tting. The model with the best score was
automatically saved to avoid under- or over�tting with respect to the number of epochs. The training was conducted up
to 100 epochs, and in an initial trial up to 1000 epochs. With abatch size of 32, the best BiLSTM model in our tests was
obtained between epoch 17 and 37.



International Journal of Production Research 13

Table 2. Classi�cation results per class – SVM.

Accuracy Precision Recall F1 score

Class 0: None or reject 0.73 0.80 0.82 0.81
Class 1: B supplies A 0.92 0.39 0.26 0.31
Class 2: A supplies B 0.82 0.38 0.42 0.40
Class 3: ambiguous/undirected 0.92 0.35 0.35 0.35
Class 4: ownership/part-of 0.97 0.47 0.35 0.40
Micro-averaged 0.68

Table 3. Classi�cation results per class (averaged over 10 runs) – MLP.

Accuracy Precision Recall F1 score

Class 0: None or reject 0.78 0.82 0.87 0.85
Class 1: B supplies A 0.91 0.30 0.22 0.26
Class 2: A supplies B 0.84 0.44 0.44 0.44
Class 3: ambiguous/undirected 0.92 0.34 0.36 0.35
Class 4: ownership/part-of 0.97 0.69 0.18 0.28
Micro-averaged 0.71

Table 4. Classi�cation results per class (averaged over 10 runs) – BiLSTM.

Accuracy Precision Recall F1 score

Class 0: None or reject 0.78 0.85 0.85 0.85
Class 1: B supplies A 0.92 0.33 0.21 0.25
Class 2: A supplies B 0.83 0.42 0.63 0.51
Class 3: ambiguous/undirected 0.93 0.42 0.24 0.31
Class 4: ownership/part-of 0.97 0.58 0.22 0.31
Micro-averaged 0.72

The overall results are provided in Table1. As expected, the strati�ed dummy classi�er outperforms the random one
and achieves a micro-averagedF1 score of 0.38. The actual classi�ers perform well-above this baseline.

The class-wise classi�cation performance for the SVM is shown in Table2.
The class-wise classi�cation performance for the MLP is shown in Table3.
The class-wise classi�cation performance for the BiLSTM isshown in Table4.
Even though, the BiLSTM achieved a micro-averagedF1 score of approximately 0.72 compared to 0.71 achieved by the

MLP, this shall not suggest that the BiLSTM is generally the best algorithm for the problem at hand. Despite multiple runs,
differences may still be due to chance and not all algorithms, con�gurations and data representations could be tested. The
trained classi�ers appear to be able to distinguish well between Class 0 and all others, as demonstrated by theF1 score of
0.85 for Class 0 achieved by both neural network architectures. Especially, recall of the Classes 1–4 still remains relatively
low which is likely due to the small size of the obtained dataset. More concretely, the classi�er may encounter completely
new linguistic expressions in the test phase that it did not encounter during the training phase. This is true in particular for
the classes with small sample size, such as ‘ownership / part-of’ and ‘B supplies A’. Regarding the interpretation of the
achieved results, the following limitations have to be considered.

The obtained dataset focussed on two manufacturing industries, automotive and aerospace, which may limit its useful-
ness for other industries with different supply network structures. While some generic expressions, such as ‘supplieswith’,
are used across industries and the classi�er should performwell for these, other expressions may be more industry-speci�c
and including examples of these in the dataset could lead to the discovery of further relations.

Because the human annotation was collected for already NER-tagged sentences, the error introduced by the NER itself
is not considered in the stated classi�cation performance.

With regards to de�ning relationship classes, there appears to be a trade-off between the number of relationship classes
and the simplicity of the classi�cation task. More classes may lead to a longer annotation time or lower labelling quality.
On the other hand, the de�ned classes are still limited in their ability to distinguish more subtle semantic differencesin
relationships. For example, it may be useful to distinguishbuyer–supplier relations that have just ended from those who
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explicitly never existed, and a relationship that is explicitly said to have never existed may have to be distinguished from
one where information is just lacking.

It seems as if much of the information is encapsulated in the words themselves rather than the word order. However, it
should be immediately clear that a model that does not consider word sequences cannot possibly always correctly distinguish
the class ‘A supplies B’ from the class ‘B supplies A’. For some of those sentences, the set of words is identical and only
the order of the entity mentions in the sentence is different. Thus, it is expected that models able to consider sequences
(sequence models) will outperform those models that are notable to do so.

6. Visualising relations in a basic supply chain map

To obtain a basic supply chain map from the set of relation triples, two simple aggregation steps can be performed to achieve
a minimal level of aggregation by deduplicating entity mentions and relation occurrences.

Collapsing identical entity mentions:By feeding in the set of triples into visualisation tools, such as D3.js11 or
Cytoscape,12 entity mentions with identical names will be collapsed intoone, as shown in Figure10. This step is an implicit,
naïve form of entity disambiguation where entity mentions with identical names are assumed to refer to the identical entity,
and entity mentions with different names are assumed to refer to different entities. For instance, ‘Toyota Motor Corporation’
and ‘Toyota’ would be considered two separate entities.

Collapsing repeated relation occurrences:A further aggregation step is to treat multiple occurrencesof the same relation
in different sentences or documents as an attribute of the relation. This attribute is visualised not as separate links but, for
instance, as the width or colour of a link. This is illustrated in Figure11 where the number of relation occurrences is also
indicated by the link width and a number on the link.

Figure 12 shows a simple, automated visualisation of automatically extracted buyer–supplier relations in form of a
basic supply chain map. This particular visualisation was implemented in d3.js. Different relation classes are represented
by different line types, e.g. the ownership relation is represented by a dashed line. Directional relations are visualised using
arrows pointing in the direction of the material �ow.

To obtain the map, the following authentic sentences were processed:

ASCO manufactures and supplies Toyota with these water pumps. ASCO, manufacturer of high lift device mechanisms, complex
mechanical assemblies and major functional components, signed a long term contract with Airbus for the production of hybrid
complex frames. Denso supplies Toyota with approximately half of its components. GKN Aerospace has been awarded a contract
by Airbus. Velocity Composites has signed a new contract that will see it supply aerospace manufacturer GKN Aerospace with
structural plies for the next �ve years. Japanese car brandsToyota and Suzuki have announced wide-ranging global collaboration
plans. Toyota owns close to 25% of subsidiary Denso.

Relations that were identi�ed as directed ones are indicated as such in the map. The arrow head indicates the detected
material �ow. The classi�er interpreted the relation between Toyota and Suzuki as non-directional/partnership, as indicated

Figure 10. Collapsing nodes.

Figure 11. Collapsing repeated relation occurrences.
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Figure 12. Basic supply chain map based on extracted relations.

by the lacking arrow head for this link. The input text described two relation types between Toyota and Denso: a directed
buyer–supplier relation and an ownership one. The size of this knowledge graph can become arbitrarily large by processing
additional news data.

It is obvious that supply chain maps that can be generated solely based on simple company-to-company relations are
limited. For instance, the visualisation appears to suggest that Velocity Composites is a sub-tier supplier of Airbus.However,
the provided text example alone does not provide suf�cient evidence for this inference. One way to address this ‘transitiv-
ity problem’ is to also extract the end-product for which a part is intended if this fact is mentioned in the context. The
visualisation can also be further enriched. e.g. the con�dence in each relation classi�cation could be indicated.

7. Conclusion and future research

To address the problem of limited visibility of extended supply chain structures, we proposed to automate the extraction
of supply chain maps from news articles using Natural Language Processing and Machine Learning technology. A funda-
mental building block for this approach is the extraction ofindividual buyer–supplier relations between two organisations
from natural language text. The contributions of this paperare thus the following: We �rst proposed a methodology for
obtaining a text corpus to evaluate the performance of classi�ers that are designed to extract buyer–supplier relationships.
Following the methodology, we were able to show that an inter-annotator agreement of 0.90 is possible by obtaining a
corpus that can be used to train and test classi�ers, such as neural networks. Furthermore, we proposed an approach to
convert example sentences into feature vectors by masking the names of organisational entities. Lastly, we were able to
obtain a �rst baseline classi�cation performance for buyer–supplier relations: A micro-averagedF1 score of> 0.7 suggests
that the automated extraction is indeed a viable path forwards. The generated triples can be visualised in a basic supply
chain map.

The classi�er can be further improved by adding more training examples following the same procedure described in
this paper. Furthermore, models based on even more recent NLP developments, such as so-called transformers using the
attention mechanism, could be alternative options. Havinga trained model allows us to fully automatically extract buyer–
supplier relations from large unlabelled text corpora and to visualise the extracted buyer–supplier relation in a network.
Thus, in future work, we would like to apply the trained classi�er to a large unlabelled dataset to be able to answer questions
regarding the availability and density of information, especially in varying industrial contexts. In a �rst test, the trained
classi�er applied to the Reuters TRC2 dataset returned about 37,000 instances of company-to-company relations that were
predicted to be buyer–supplier ones (Classes 1–3). To improve precision, these examples – as opposed to a sparse dataset
of random samples – can be manually labelled and then added tothe training dataset.

The value of the generated supply chain maps could further beincreased by incorporating additional tasks. Entity
disambiguation and entity linking would allow to provide additional information, such as the geolocation, industry orsize
of a company. The information extraction can also be extended to cover provided goods and services as well as the intended
end-product of those goods and services. Recently, massivepre-trained language models, such as GPT-2, BERT and others,
have been made available and offer a further exciting futureresearch perspective. The knowledge captured by being trained
on extremely large corpora could potentially also be leveraged for the extraction of buyer–supplier relations or even the
prediction of potential suppliers. Generally, the approach proposed in this paper could help reduce risks associated with
limited visibility of multi-tier supply networks by complementing existing supply chain mapping efforts.
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Samples of annotated sentences, resulting predictions as well as code have been made available in a public GitHub
repository.13

Disclosure statement
No potential con�ict of interest was reported by the authors.

Notes
1. Global Vectors for Word Representation (GloVe); https://nlp.stanford.edu/projects/glove/; last accessed: 7 January 2018.
2. Word2Vec; https://code.google.com/archive/p/word2vec/; last accessed 7 January 2018.
3. LION project; http://lbd.lionproject.net; last accessed 7 January 2018.
4. Reuters corpora TRC2 and RCV1 (https://trec.nist.gov/data/reuters/reuters.html).
5. NewsIR’16 dataset (https://research.signal-ai.com/newsir16/signal-dataset.html); last accessed: 10 January 2019.
6. Webhose.io (https://webhose.io/); last accessed: 10 January 2019.
7. spaCy (https://spacy.io/; last accessed: 9 January 2019) is a widely used open-source NLP software library.
8. Flair (https://github.com/zalandoresearch/�air; last accessed: 11 June 2019).
9. Stanford CoreNLP (https://stanfordnlp.github.io/CoreNLP/index.html; last accessed: 11 June 2019).

10. Strati�ed dummy classi�er provided by the scitkit-learn library (https://scikit-learn.org/stable/modules/generated/sklearn.dummy.
DummyClassi�er.html; last accessed: 13 June 2019).

11. d3.js (https://d3js.org/); last accessed: 11 June 2019.
12. Cytoscape (https://cytoscape.org/); last accessed: 11 June 2019.
13. https://github.com/pwichmann/supply_chain_mining.
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