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Abstract. Automated Literature Based Discovery (LBD) generates new knowl-
edge by combining what is already known in literature. Facilitating large-scale
hypothesis testing and generation from huge collections of literature, LBD could
significantly support research in biomedical sciences. However, the uptake of
LBD by the scientific community has been limited. One of the key reasons for
this is the limited nature of existing LBD methodology. Based on fairly shallow
methods, current LBD captures only some of the information available in litera-
ture. We discuss how advanced Text Mining based on Information retrieval, Nat-
ural Language Processing and data mining could open the doors to much deeper,
wider coverage and dynamic LBD better capable of evolving with science, in par-
ticular when combined with sophisticated, state-of-the-art knowledge discovery
techniques.

1 Scientific Background

The volume of scientific literature has grown dramatically over the past decades, par-
ticularly in rapidly developing areas such as biomedicine. PubMed (the US National
Library of Medicine’s literature service) provides now access to more than 24M cita-
tions, adding thousands of records daily5. It is now impossible for scientists working
in biomedical fields to read all the literature relevant to their field, let alone relevant
adjacent fields. Critical hypothesis generating evidence is often discovered long after
it was first published, leading to wasted research time and resources [20]. This hinders
the progress on solving fundamental problems such as understanding the mechanisms

5 PubMed: http://www.ncbi.nlm.nih.gov/pubmed
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underlying diseases and developing the means for their effective treatment and preven-
tion.

Automated Literature Based Discovery (LBD) aims to address this problem. It gen-
erates new knowledge by combining what is already known in literature. It has been
used to identify new connections between e.g. genes, drugs and diseases and it has re-
sulted in new scientific discoveries, e.g. identification of candidate genes and treatments
for illnesses [6, 21].

Facilitating large-scale hypothesis testing and generation from huge collections of
literature, LBD could significantly support scientific research [15]. However, based on
fairly shallow techniques (e.g. dictionary matching) current LBD captures only some
of the information available in literature. Enabling automatic analysis and understand-
ing of biomedical texts via techniques such as Natural Language Processing (NLP),
advanced Text Mining (TM) could open the doors to much deeper, wider coverage
and dynamic LBD better capable of evolving with science. The last decade has seen
massive application of such methodology to biomedicine and has produced tools for
supporting important tasks such as literature curation and the development of semantic
data-bases [20, 19]. Although advanced TM could similarly support LBD, little work
exists in this area, e.g. [25].

In this paper we discuss the state of the art of LBD and the benefits of an approach
based on advanced TM. We describe how such an approach could greatly improve the
capacity of LBD, in particular when combined with sophisticated knowledge discov-
ery techniques. We illustrate our discussion by highlighting the potential benefit in the
literature-intensive area of cancer biology. Since LBD is of wide interest and its poten-
tial applications are numerous, improved LBD could, in the future, support scientific
discovery in a manner similar to widely employed retrieval and sequencing tools.

2 Materials and Methods

2.1 Literature-Based Discovery: The State of the Art

Literature-based discovery was pioneered by Swanson [22] who hypothesised that the
combination of two separately published premises “A causes B“ and “B causes C“ indi-
cates a relationship between A and C. He discovered fish oil as treatment for Raynaud’s
syndrome based on their shared connections to blood viscosity in literature. Since then,
considerable follow-up research has been conducted on LBD (see [6] for a recent re-
view).

LBD has been used for both closed and open discovery. Closed discovery (i.e.
hypothesis testing) assumes a potential relationship between concepts A and C and
searches for intermediate concepts B that can bridge the gap between A and C and sup-
port the hypothesis. It can help and find an explanation for a relationship between two
concepts. Open discovery (i.e. hypothesis generation), in contrast, takes as input con-
cept A and aims to identify a set of concepts C that are likely to be linked to A via an
intermediate concept B. It can, for example, be used to find new treatments for a given
disease or new applications for an existing drug.

The first step of LBD is to identify the concepts of interest (e.g. genes, diseases,
drugs) in literature. Most current systems use dictionary-based matching for this. The
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MetaMap tool (http://metamap.nlm.nih.gov/) which identifies biomedical concepts by
mapping text to the Unified Medical Language System (UMLS) Metathesaurus [7] is a
popular choice. Unfortunately, the dictionary-based method suffers from poor coverage
because it cannot find linguistically complex concepts (e.g. event-like concepts describ-
ing biomedical processes), concepts indicated by anaphoric expressions (e.g. pronouns
or anaphoric expressions spanning sentences) or newly introduced concepts still miss-
ing in dictionaries.

The second step of LBD is to discover relations between concepts. This is typically
done using co-occurrence statistics. However, since most co-occurring concepts are un-
related, this simple approach is error-prone and also fails to explain how two concepts
might be related (e.g. that there is an interaction or activation relationship between
them, or possibly a negative association). Semantic filtering based on relations in a the-
saurus such as UMLS can help [6] but suffers from the limitations of dictionary-based
approaches. While use of advanced text mining could enable the discovery of novel
concepts and relations in context, it remains relatively unexplored in LBD [25].

For knowledge discovery, most systems use Swanson’s ABC model or its exten-
sions, e.g. concept chains [8], network analysis [16], and logical reasoning [24] (see [21]
for a survey of such extensions). For a concept pair A and C, these models identify the
most obvious B and return a ranking of pairs using measures such as average mini-
mum weight, linking term count and and literature cohesiveness [26]. Based on partial
B evidence only, these models are not optimally accurate and also do not produce data
suitable for statistical hypothesis testing. The latter would be valuable for users of LBD
as it could guide them towards highly confident hypotheses.

Evaluation of LBD is challenging as successful techniques discover knowledge that
is not proven valuable at the time of discovery. Metrics for direct system comparisons
are now available [26] and some existing techniques have been integrated in practical
LBD tools which have been made freely available to scientists. Examples of such tools
include Arrowsmith [23], BITOLA [5], Semantic MEDLINE [1], and FACTA+ [25],
among others. These tools have been used to generate new scientific discoveries (e.g.
candidate genes for Parkinson’s disease, a link between hypogonadism and diminished
sleep quality); see [6] and [21] for recent reviews. However, confirmation of such dis-
coveries via actual laboratory experiments remains rare.

Due to combination of these factors, LBD is not in wide use yet, despite its recog-
nised potential for scientific research [15]. Although closer engagement with end-users,
better consideration of end-users needs, and increased validation of findings in the con-
text of laboratory experiments is needed, the fundamental bottleneck lies in the current
LBD methodology which suffers from poor coverage as it is capable of identifying only
some of the relevant information in literature.

2.2 Advanced Text Mining

LBD could be greatly improved via use of advanced TM. Combining methodology from
Information Retrieval (IR), NLP and data mining, TM aims to automatically identify,
extract and discover new information in written texts [20, 19]. It can be used to organise
vast amounts of unstructured textual data now generated through economic, academic
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and social activities into structured forms that are easily accessible and intuitive for
users [15].

Given the rapid growth of scientific literature in biomedicine, biomedical TM has
become increasingly popular over the past decade. Basic resources (e.g. lexicons, databases,
annotated corpora, datasets) and NLP techniques such as part-of-speech (POS) tagging
(i.e. classifying words) and parsing (i.e. analysing the syntactic structure of sentences)
have been developed for biomedicine. IR (i.e. identification of relevant documents) and
Information Extraction (IE) (i.e. identification of specific information in documents) is
now developed, and relatively accurate techniques are now available for identification
of named entities (e.g. concept name such as protein names, e.g. AntP), relations (e.g.
specific interactions between AntP and BicD), and events (i.e. identifying facts about
named entities, e.g. that the AntP protein represses BicD, repress(AntP,BicD)) in texts.
Progress has also been made on increasingly complex tasks such as biological pathway
or network extraction [10]. Not only direct evaluations against gold standard datasets
but also evaluations in the context of practical tasks such as literature curation, liter-
ature review and semantic enrichment of networks have produced promising results,
highlighting the great potential of deep TM in supporting biomedicine [20, 19, 9].

Much of recent TM research has focussed on enhancing TM further for demand-
ing real-life tasks. In terms of accuracy, TM is challenged by the linguistic nature of
biomedical texts. The biomedical language is characterized by heavy use of terminol-
ogy and long sentences that have high informational and structural complexity (e.g.
complex co-referential links and nested and/or inter-related relations). In addition, the
mapping from the surface syntactic forms to basic semantic distinctions is not straight-
forward. For example, the same relation of interest may be expressed by nominaliza-
tions (e.g. phosphorylation of GAP by the PDGF receptor) and verbal predications (e.g.
X inhibits/phosphorylates Y) which may not be easy to recognize and relate together.

NLP techniques such as statistical parsing and anaphora resolution which yields
richer representations (e.g. internal structure of nominalisations, co-referential links in
texts such as it, the protein, the AntP protein) are not challenged to the same extent as
shallow techniques are [20, 19]. Integration of lexical, semantic, and discourse analysis
could help and improve accuracy further [4, 13].

In terms of portability, TM has traditionally relied on expensive, manually devel-
oped resources (e.g. corpora consisting of thousands of sentences annotated for events
by linguists) which are expensive to develop and therefore available for a handful of
areas only (e.g. molecular biology, chemistry). Due to strong sub-domain variation re-
sources developed for one area are not directly applicable to others [12]. Researchers
are now improving the adaptability of TM by reducing the need for manual annotations
via minimally supervised machine learning [3] and use of declarative expert (e.g. task,
domain) knowledge in guiding learning [4]. Because text mining components typically
build on each other, traditional systems have a pipeline architecture where errors tend to
propagate from one level to another. Leveraging mutual disambiguation among related
tasks and avoiding error propagation, joint learning and inference of various TM tasks
is also gaining popularity and has been shown to further improve accuracy [17].
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2.3 Towards LBD based on Advanced Text Mining

Based on much deeper analysis and understanding of texts, advanced TM could enable
considerably more accurate, broader and dynamic LBD than current, largely dictionary-
based methods. While this potential has been recognized, e.g. [15, 6], very little work
has been done on TM-based LBD, e.g. [25]. For long, application of TM to LBD has
been challenged by the interdisciplinary nature of biomedical research - the fact that
research in one area draws increasingly on that in many others, while TM has been
typically optimised to perform well in a clearly defined area. However, given recent
developments in the field aimed at optimising both accuracy and portability of TM (see
the developments discussed in the section above), the approach is now ripe for appli-
cation in real-life LBD. Whilst TM is challenging by nature and will not produce fully
accurate output, errors can be reduced e.g. via statistical filtering to produce maximally
accurate input to LBD. Filtering has proved effective in previous works which have
demonstrated the usefulness of adaptive TM for practical tasks in biomedicine, e.g. [19,
3]

The use of such enhanced, adaptive TM will enable targeting not only basic con-
cepts (i.e. terms or named entities) like most previous LBD, but also complex concepts
describing biomedical processes (i.e. events), and relations between concepts in diverse
biomedical literature. The latter can be used to restrict search space by permitting direct
connections only between concepts which are involved in specific relations [6]. All this
information can be learned dynamically from relevant biomedical literature as science
evolves, and LBD can be performed on the resulting complex network of concepts.

Open and closed LBD from such rich, TM-based data could also benefit from im-
proved methodology for knowledge discovery. This methodology could be based on
recent data mining techiques which enable considering all the intermediate concepts
between target concepts. Just one example method is link prediction in complex net-
works [14] which has been applied successfully to to related problems in social network
analysis [11] and web mining [2]. In comparison with most current LBD which is based
on extensions of Swanson’s ABC model [21] and considers only the most obvious inter-
mediate concepts, such enhanced techniques could provide improved estimate of links
between concepts. They could also generate data needed for calculating the likelihood
of different concept pairs using statistical tests. This can be highly useful for scientists
as it enables them to focus on highly confident hypotheses.

3 A Case Study in Cancer Biology

To illustrate the benefit of TM-based LBD we will describe how such an approach could
be used to support the rapidly growing, literature-intensive area of cancer biology. Can-
cer biology is one of the “interdisciplinary“ areas of biomedicine where knowledge
discovery draws from advances made in a variety of sub-domains (rather than one well-
defined sub-domain) of the field. This makes it particularly difficult for scientists to
keep on top of all the relevant literature and highlights the need for automated LBD.
From the perspective of TM-based LBD, an area such as cancer biology offers the re-
search challenges needed for the development of adaptive TM technology as many sub-
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domains involved do not have annotated datasets that could be used for full supervision
of systems.

The starting point is to gather relevant literature via PubMed – for example, all
the MEDLINE abstracts and freely available full text articles from journals in relevant
sub-areas of biomedicine (e.g. cell biology, toxicology, pharmacology, and medicine,
among others). The resulting texts will be cleaned and processed using sophisticated
NLP techniques such as part-of-speech tagging, parsing, semantic and discourse pro-
cessing. Concepts of relevance to cancer research (e.g. cancer types, genes, proteins,
drugs, physiological entities, symptoms, hallmarks of cancer) will then be extracted
from NLP-processed texts, along with relations of interest (e.g. physical, spatial, func-
tional, temporal) between the concepts.

While LBD that uses dictionary-based techniques can find mentions of simple con-
cepts (e.g. gene names) and their known synonyms, TM can also find mentions of con-
cepts “hidden“ in anaphoric expressions, those appearing in complex linguistic con-
structions and those missing in resources such as UMLS, yielding more complete in-
formation for LBD. The concepts and relations would be extracted from rich NLP-
annotated data using minimally supervised, adaptive TM-techniques. In the absence
of relevant in-domain training data, TM can be guided by use of expert knowledge
(e.g. constraints that capture task knowledge [4]) and joint inference of related tasks [17].

The network of concepts emerging from TM will be richer than that created by tradi-
tional methods. While it will also be noisier due to the challenging nature of advanced
NLP and TM, previous work has demonstrated that the impact of noise on practical
tasks, in particular after applying statistical noise filtering, will be minimal and unlikely
to affect the usefulness of TM. Finally, sophisticated knowledge discovery techniques,
e.g. [14], will be applied to the resulting complex network of concepts to conduct max-
imally accurate closed and/or open discovery.

Figure 1 illustrates how such a TM-based LBD tool could be used to support cancer
biology. It shows an example that focuses on anti-carcinogenic effects of statins. Statins
are known to have anti-carcinogenic properties but the underlying mechanism by which
these drugs prevent cancer is not fully understood [18]. This problem can be studied by
investigating whether specific proteins and hallmarks of cancer act as intermediate con-
cepts between statins and different cancer cell types and if yes, whether such concepts
could help to explain the mechanism. In the case study illustrated in Figure 1, cancer
biologists use a TM-based LBD tool for closed discovery to investigate the question In
which way do statins prevent prostate cancer? The given concepts are

Concept A: Drug: Statin
Concept C: Cancer type: Prostate cancer

The tool will

1. gather literature: PubMed articles on “statin“ and “prostate cancer“,
2. identify Concepts B (Hallmarks, Proteins) in the resulting literature using TM,
3. build a concept map for Concepts A, B and C,
4. return B that link to both A and C.

The tool will also identify relevant relations between concepts:
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Interacts with (Statin, Akt kinase)
Causes (Akt kinase, Prostate cancer)
Prevents (Statin, Sustaining proliferative signaling)
Causes (Sustaining proliferative signaling, Prostate cancer)
Exhibits (Akt kinase, Sustaining proliferative signaling)

The answer emerging from the tool is that statins prevent prostate cancer by inhibit-
ing cell proliferation via Akt kinase.

Fig. 1. TM-based LBD for cancer biology. The figure illustrates how LBD can discover the mech-
anism by which statins prevent prostate cancer.

To be useful, such TM-based technology should be integrated in a practical tool
aimed at supporting cancer researchers in LBD. The tool should allow uploading arti-
cles of interest e.g. via PubMed, performing open and close discovery using a set of
queries to define the scope of interest in terms of concepts and relations, visualising the
results and the statistical trends in the data, and navigating through individual articles,
highlighting the scientific evidence in its actual context. Such a tool should be devel-
oped in close collaboration with scientists to ensure optimal integration with existing
research practices.

Finally, any new hypotheses or discoveries resulting from LBD should ideally be
confirmed experimentally by scientists. In the case of cancer biology, one might validate
the promising findings from LBD experimentally in vitro according to their nature.
Such experimentation and subsequent publication in relevant journals can encourage
the uptake of LBD by the research community, leading to further benefits.

4 Conclusion

In biomedicine a number of LBD tools have been developed to support the testing and
discovery of research hypotheses in scientific literature. Although such tools could, in
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principle, greatly support scientists in their work, their uptake has remained limited. We
have highlighted a number of issues that act as barriers to wider exploitation of LBD
in scientific research, and have focused, in particular, on limitations related to the cur-
rent LBD methodology. We have explained how use of advanced TM could enable the
discovery of much richer information in scientific texts than is possible using current
largely dictionary-based methods. This potential has been previously recognised, but
TM has only recently reached the point where it can be realistically applied to diverse
literature without costly creation of manually annotated in-domain training data. While
the development of a fully optimal LBD approach based on TM will require consid-
erable research effort, it is now realistic – and looking into the future, the approach
could open the doors to much wider coverage LBD capable of better evolving with the
development of biomedical science.
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